Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 22665, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114620

RESUMO

Research studies have been carried out to accentuate Fennel Seed Spent, a by-product of the Nutraceutical Industry, as an inexpensive, recyclable and operational biosorbent for bioremediation of Acid Blue 113 (AB113) in simulated water-dye samples and textile industrial effluent (TIE). The physical process of adhesion of AB113 on the surface of the biosorbent depends on various parameters, such as the initial amount of the dye, amount and expanse of the biosorbent particles, pH of the solution and temperature of the medium. The data obtained was analyzed using three two-parameter and five three-parameter adsorption isotherm models to glean the adsorbent affinities and interaction mechanism of the adsorbate molecules and adsorbent surface. The adsorption feature study is conducted employing models of Weber-Morris, pseudo 1st and 2nd order, diffusion film model, Dumwald-Wagner and Avrami model. The study through 2nd order pseudo and Avrami models produced complementary results for the authentication of experimental data. The thermodynamic features, ΔG0, ΔH0, and ΔS0 of the adsorption process are acclaimed to be almost spontaneous, physical in nature and endothermic in their manifestation. Surface characterization was carried out using Scanner Electron Microscopy, and identification and determination of chemical species and molecular structure was performed using Infrared Spectroscopy (IR). Maximum adsorption evaluated using statistical optimization with different combinations of five independent variables to study the individual as well as combined effects by Fractional Factorial Experimental Design (FFED) was 236.18 mg g-1 under optimized conditions; pH of 2, adsorbent dosage of 0.500 g L-1, and an initial dye concentration of 209.47 mg L-1 for an adsorption time of 126.62 min with orbital shaking of 165 rpm at temperature 49.95 °C.

3.
Photochem Photobiol Sci ; 22(10): 2357-2371, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37440001

RESUMO

Luminescent lanthanide (Ln3+ = Pr, Nd, Sm, Eu, and Tb)-ions doped calcium molybdate(CaMoO4) nanoparticles(NPs) were prepared by the polyol wet-chemical route. X-ray diffraction (XRD) pattern of all samples showed the formation of a single-phase scheelite type tetragonal structure with an average crystalline size over 21.6-33.4 nm. Thermal stability was evaluated to study the surface-anchored functional groups by weight loss measurement. Fourier transform infrared (FTIR) spectra were recorded to identify the adsorbed functional groups. Aqueous dispersibility and colloidal stability were recorded with the help of the UV/visible absorption spectra. These nanocrystals formed semi-transparent colloidal solutions after being evenly disseminated in aqueous media. The doping of the luminescent ions significantly affects the crystal structure and photoluminescence (PL) properties of the CaMoO4:Ln3+ NPs. In a comparative analysis of the absorption spectra, bandgap, Raman-active modes, and luminescent properties, they were greatly influenced by altering the dopant ion due to the variation in the atomic radius of the element. The doping of smaller atomic radius Ln3+-ions distorts the unit cell, and, subsequently, bond angle/length alters the symmetry of the host crystal. The distorted crystal lattice affects the crystalline, size, lattice parameter, band gap values, Raman active vibrational modes, and luminescent efficiency. The distorted crystal structure of the host lattices facilitates the movement of the oxygen vacancies through charge transfer, resulting in efficiently suppressed emission efficiency.Graphical abstract.

4.
J Funct Biomater ; 14(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36662085

RESUMO

Fabrication of ZnO nanoparticles (NPs) via green process has received enormous attention for its application in biomedicine. Here, a simple and cost-effective green route is reported for the synthesis of ZrO2-doped ZnO/reduced graphene oxide nanocomposites (ZnO/ZrO2/rGO NCs) exploiting ginger rhizome extract. Our aim was to improve the anticancer performance of ZnO/ZrO2/rGO NCs without toxicity to normal cells. The preparation of pure ZnO NPs, ZnO/ZrO2 NCs, and ZnO/ZrO2/rGO NCs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS). XRD spectra of ZnO/ZrO2/rGO NCs exhibited two distinct sets of diffraction peaks, ZnO wurtzite structure, and ZrO2 phases (monoclinic + tetragonal). The SEM and TEM data show that ZrO2-doped ZnO particles were uniformly distributed on rGO sheets with the excellent quality of lattice fringes without alterations. PL spectra intensity and particle size of ZnO decreased after ZrO2-doping and rGO addition. DLS data demonstrated that green prepared samples show excellent colloidal stability in aqueous suspension. Biological results showed that ZnO/ZrO2/rGO NCs display around 3.5-fold higher anticancer efficacy in human lung cancer (A549) and breast cancer (MCF7) cells than ZnO NPs. A mechanistic approach suggested that the anticancer response of ZnO/ZrO2/rGO NCs was mediated via oxidative stress evident by the induction of the intracellular reactive oxygen species level and the reduction of the glutathione level. Moreover, green prepared nanostructures display good cytocompatibility in normal cell lines; human lung fibroblasts (IMR90) and breast epithelial (MCF10A) cells. However, the cytocompatibility of ZnO/ZrO2/rGO NCs in normal cells was better than those of pure ZnO NPs and ZnO/ZrO2 NCs. Augmented anticancer potential and improved cytocompatibility of ZnO/ZrO2/rGO NCs was due to ginger extract mediated beneficial synergism between ZnO, ZrO2, and rGO. This novel investigation emphasizes the significance of medicinal herb mediated ZnO-based NCs synthesis for biomedical research.

5.
ACS Omega ; 7(8): 7103-7115, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252701

RESUMO

ZnO nanoparticles (NPs) have attracted great attention in cancer therapy because of their novel and tailorable physicochemical features. Pure ZnO NPs, molybdenum (Mo)-doped ZnO NPs, and Mo-ZnO/reduced graphene oxide nanocomposites (Mo-ZnO/RGO NCs) were prepared using a facile, inexpensive, and eco-friendly approach using date palm (Phoenix dactylifera L.) fruit extract. Anticancer efficacy of green synthesized NPs/NCs was examined in two different cancer cells. The potential mechanism of the anticancer activity of green synthesized NPs/NCs was explored through oxidative stress and apoptosis. The syntheses of pure ZnO NPs, Mo-ZnO NPs, and Mo-ZnO/RGO NCs were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and photoluminescence (PL). Dynamic light scattering (DLS) study indicated the excellent colloidal stability of green prepared samples. Mo-ZnO/RGO NCs exhibited threefold higher anticancer activity in human colon (HCT116) and breast (MCF7) cancer cells as compared to pure ZnO NPs. The anticancer activity of Mo-ZnO/RGO NCs was mediated through reactive oxygen species, p53, and the caspase-3 pathway. Moreover, cytocompatibility of Mo-ZnO/RGO NCs in human normal colon epithelial (NCM460) and normal breast epithelial cells (MCF10A) was much better than those of pure ZnO NPs. Altogether, green stabilized Mo-ZnO/RGO NCs exhibited enhanced anticancer performance and improved cytocompatibility because of green mediated good synergism between ZnO, Mo, and RGO. This study suggested the high nutritional value fruit-based facile preparation of ZnO-based nanocomposites for cancer therapy.

6.
Polymers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641166

RESUMO

The efficacy of current cancer therapies is limited due to several factors, including drug resistance and non-specific toxic effects. Due to their tuneable properties, silver nanoparticles (Ag NPs) and graphene derivative-based nanomaterials are now providing new hope to treat cancer with minimum side effects. Here, we report a simple, inexpensive, and eco-friendly protocol for the preparation of silver-reduced graphene oxide nanocomposites (Ag/RGO NCs) using orange peel extract. This work was planned to curtail the use of toxic chemicals, and improve the anticancer performance and cytocompatibility of Ag/RGO NCs. Aqueous extract of orange peels is abundant in phytochemicals that act as reducing and stabilizing agents for the green synthesis of Ag NPs and Ag/RGO NCs from silver nitrate and graphene oxide (GO). Moreover, the flavonoid present in orange peel is a potent anticancer agent. Green-prepared Ag NPs and Ag/RGO NCs were characterized by UV-visible spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). The results of the anticancer study demonstrated that the killing potential of Ag/RGO NCs against human breast cancer (MCF7) and lung cancer (A549) cells was two-fold that of pure Ag NPs. Moreover, the cytocompatibility of Ag/RGO NCs in human normal breast epithelial (MCF10A) cells and normal lung fibroblasts (IMR90) was higher than that of pure Ag NPs. This mechanistic study indicated that Ag/RGO NCs induce toxicity in cancer cells through pro-oxidant reactive oxygen species generation and antioxidant glutathione depletion and provided a novel green synthesis of Ag/RGO NCs with highly effective anticancer performance and better cytocompatibility.

7.
ACS Omega ; 6(27): 17353-17361, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278121

RESUMO

Bismuth (III) oxide nanoparticles (Bi2O3 NPs) have shown great potential for biomedical applications because of their tunable physicochemical properties. In this work, pure and Zn-doped (1 and 3 mol %) Bi2O3 NPs were synthesized by a facile chemical route and their cytotoxicity was examined in cancer cells and normal cells. The X-ray diffraction results show that the tetragonal phase of ß-Bi2O3 remains unchanged after Zn-doping. Transmission electron microscopy and scanning electron microscopy images depicted that prepared particles were spherical with smooth surfaces and the homogeneous distribution of Zn in Bi2O3 with high-quality lattice fringes without distortion. Photoluminescence spectra revealed that intensity of Bi2O3 NPs decreases with increasing level of Zn-doping. Biological data showed that Zn-doped Bi2O3 NPs induce higher cytotoxicity to human lung (A549) and liver (HepG2) cancer cells as compared to pure Bi2O3 NPs, and cytotoxic intensity increases with increasing concentration of Zn-doping. Mechanistic data indicated that Zn-doped Bi2O3 NPs induce cytotoxicity in both types of cancer cells through the generation of reactive oxygen species and caspase-3 activation. On the other hand, biocompatibility of Zn-doped Bi2O3 NPs in normal cells (primary rat hepatocytes) was greater than that of pure Bi2O3 NPs and biocompatibility improves with increasing level of Zn-doping. Altogether, this is the first report highlighting the role of Zn-doping in the anticancer activity of Bi2O3 NPs. This study warrants further research on the antitumor activity of Zn-doped Bi2O3 NPs in suitable in vivo models.

8.
Sci Rep ; 11(1): 10859, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035437

RESUMO

The fabrication of unique taper-ended GaN-Nanotowers structure based highly efficient ultraviolet photodetector is demonstrated. Hexagonally stacked, single crystalline GaN nanocolumnar structure (nanotowers) grown on AlN buffer layer exhibits higher photocurrent generation due to high quality nanotowers morphology and increased surface/volume ratio which significantly enhances its responsivity upon ultraviolet exposure leading to outstanding performance from the developed detection device. The fabricated detector display low dark current (~ 12 nA), high ILight/IDark ratio (> 104), fast time-correlated transient response (~ 433 µs) upon ultraviolet (325 nm) illumination. A high photoresponsivity of 2.47 A/W is achieved in self-powered mode of operation. The reason behind such high performance could be attributed to built-in electric field developed from a difference in Schottky barrier heights will be discussed in detail. While in photoconductive mode, the responsivity is observed to be 35.4 A/W @ - 3 V along with very high external quantum efficiency (~ 104%), lower noise equivalent power (~ 10-13 WHz-1/2) and excellent UV-Vis selectivity. Nanotower structure with lower strain and dislocations as well as reduced trap states cumulatively contributed to augmented performance from the device. The utilization of these GaN-Nanotower structures can potentially be useful towards the fabrication of energy-efficient ultraviolet photodetectors.

9.
Int J Nanomedicine ; 16: 89-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33447029

RESUMO

BACKGROUND: Therapeutic selectivity and drug resistance are critical issues in cancer therapy. Currently, zinc oxide nanoparticles (ZnO NPs) hold considerable promise to tackle this problem due to their tunable physicochemical properties. This work was designed to prepare SnO2-doped ZnO NPs/reduced graphene oxide nanocomposites (SnO2-ZnO/rGO NCs) with enhanced anticancer activity and better biocompatibility than those of pure ZnO NPs. MATERIALS AND METHODS: Pure ZnO NPs, SnO2-doped ZnO (SnO2-ZnO) NPs, and SnO2-ZnO/rGO NCs were prepared via a facile hydrothermal method. Prepared samples were characterized by field emission transmission electron microscopy (FETEM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectrometer, and dynamic light scattering (DLS) techniques. Selectivity and anticancer activity of prepared samples were assessed in human breast cancer (MCF-7) and human normal breast epithelial (MCF10A) cells. Possible mechanisms of anticancer activity of prepared samples were explored through oxidative stress pathway. RESULTS: XRD spectra of SnO2-ZnO/rGO NCs confirmed the formation of single-phase of hexagonal wurtzite ZnO. High resolution TEM and SEM mapping showed homogenous distribution of SnO2 and rGO in ZnO NPs with high quality lattice fringes without any distortion. Band gap energy of SnO2-ZnO/rGO NCs was lower compared to SnO2-ZnO NPs and pure ZnO NPs. The SnO2-ZnO/rGO NCs exhibited significantly higher anticancer activity against MCF-7 cancer cells than those of SnO2-ZnO NPs and ZnO NPs. The SnO2-ZnO/rGO NCs induced apoptotic response through the upregulation of caspase-3 gene and depletion of mitochondrial membrane potential. Mechanistic study indicated that SnO2-ZnO/rGO NCs kill cancer cells through oxidative stress pathway. Moreover, biocompatibility of SnO2-ZnO/rGO NCs was also higher against normal breast epithelial (MCF10A cells) in comparison to SnO2-ZnO NPs and ZnO NPs. CONCLUSION: SnO2-ZnO/rGO NCs showed enhanced anticancer activity and better biocompatibility than SnO2-ZnO NPs and pure ZnO NPs. This work suggested a new approach to improve the selectivity and anticancer activity of ZnO NPs. Studies on antitumor activity of SnO2-ZnO/rGO NCs in animal models are further warranted.


Assuntos
Antineoplásicos/farmacologia , Grafite/síntese química , Grafite/farmacologia , Nanocompostos/química , Estresse Oxidativo , Compostos de Estanho/síntese química , Óxido de Zinco/síntese química , Óxido de Zinco/farmacologia , Apoptose/efeitos dos fármacos , Difusão Dinâmica da Luz , Grafite/química , Humanos , Células MCF-7 , Nanocompostos/ultraestrutura , Nanopartículas/química , Fenômenos Ópticos , Estresse Oxidativo/efeitos dos fármacos , Espectrometria por Raios X , Compostos de Estanho/farmacologia , Difração de Raios X , Óxido de Zinco/química
10.
ACS Omega ; 5(48): 31076-31084, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324816

RESUMO

The present work describes the synthesis of Ag-CoFe2O4/rGO nanocomposite as a photocatalyst through the hydrothermal process by the attachment of silver and cobalt ferrite (CoFe2O4) nanoparticles on the surface of reduced graphene oxide. The effect of Ag and reduced graphene oxide (rGO) on the structure, optical, magnetic, photocatalytic, and electrochemical performance of the CoFe2O4 is systematically explored through various analytical techniques. The analyses of the observed outcomes reveal that the graphene sheets are exfoliated and decorated with well-dispersed Ag and CoFe2O4 nanoparticles. UV-vis spectra indicate a gradual shift in the absorption edge toward the higher wavelength with the addition of Ag ions, which signifies variation in the energy gap of the samples. Photoluminescence results divulge that graphene can decline the electron-hole recombination rate and improve the photocatalytic activity of the Ag-CoFe2O4/rGO nanocomposite. In this context, the Ag-CoFe2O4/rGO sample presents good catalytic activity as compared to the CoFe2O4 and Ag-CoFe2O4 photocatalysts for the degradation of methylene blue (MB) dye and suggests that the rGO plays a vital role in the Ag-CoFe2O4/rGO nanocomposite. The deterioration rate of the samples is found to be in the order of CoFe2O4(78.03%) < Ag-CoFe2O4(83.04%) < Ag-CoFe2O4/rGO(93.25%) in 100 min for MB dye, respectively, under visible-light irradiation. The room-temperature ferromagnetic behavior of the samples is confirmed by the M-H hysteresis loop measurements. Overall, the Ag-CoFe2O4/rGO nanocomposite promises to be a strong magnetic photocatalyst for contaminated wastewater treatment. The electrochemical performance of all of the samples was examined by the cyclic voltammetry (CV) that exhibits a superior rate performance and cycle stability of the Ag-CoFe2O4/rGO nanocomposite as compared to the other samples.

11.
Nanomaterials (Basel) ; 10(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266501

RESUMO

Barium titanate (BaTiO3) nanoparticles (BT NPs) have shown exceptional characteristics such as high dielectric constant and suitable ferro-, piezo-, and pyro-electric properties. Thus, BT NPs have shown potential to be applied in various fields including electro-optical devices and biomedicine. However, very limited knowledge is available on the interaction of BT NPs with human cells. This work was planned to study the interaction of BT NPs with human lung carcinoma (A549) cells. Results showed that BT NPs decreased cell viability in a dose- and time-dependent manner. Depletion of mitochondrial membrane potential and induction of caspase-3 and -9 enzyme activity were also observed following BT NP exposure. BT NPs further induced oxidative stress indicated by induction of pro-oxidants (reactive oxygen species and hydrogen peroxide) and reduction of antioxidants (glutathione and several antioxidant enzymes). Moreover, BT NP-induced cytotoxicity and oxidative stress were effectively abrogated by N-acetyl-cysteine (an ROS scavenger), suggesting that BT NP-induced cytotoxicity was mediated through oxidative stress. Intriguingly, the underlying mechanism of cytotoxicity of BT NPs was similar to the mode of action of ZnO NPs. At the end, we found that BT NPs did not affect the non-cancerous human lung fibroblasts (IMR-90). Altogether, BT NPs selectively induced cytotoxicity in A549 cells via oxidative stress. This work warrants further research on selective cytotoxicity mechanisms of BT NPs in different types of cancer cells and their normal counterparts.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33172159

RESUMO

Combined exposure of single-walled carbon nanotubes (SWCNTs) and trace metal lead (Pb) in ambient air is unavoidable. Most of the previous studies on the toxicity of SWCNTs and Pb have been conducted individually. There is a scarcity of information on the combined toxicity of SWCNTs and Pb in human cells. This work was designed to explore the combined effects of SWCNTs and Pb in human lung epithelial (A549) cells. SWCNTs were prepared through the plasma-enhanced vapor deposition technique. Prepared SWCNTs were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, and dynamic light scattering. We observed that SWCNTs up to a concentration of 100 µg/mL was safe, while Pb induced dose-dependent (5-100 µg/mL) cytotoxicity in A549 cells. Importantly, cytotoxicity, cell cycle arrest, mitochondrial membrane potential depletion, lipid peroxidation, and induction of caspase-3 and -9 enzymes following Pb exposure (50 µg/mL for 24 h) were efficiently attenuated by the co-exposure of SWCNTs (10 µg/mL for 24 h). Furthermore, generation of Pb-induced pro-oxidants (reactive oxygen species and hydrogen peroxide) and the reduction of antioxidants (antioxidant enzymes and glutathione) were also mitigated by the co-exposure of SWCNTs. Inductively coupled plasma-mass spectrometry results suggest that the adsorption of Pb on the surface of SWCNTs could attenuate the bioavailability and toxicity of Pb in A549 cells. Our data warrant further research on the combined effects of SWCNTs and Pb in animal models.


Assuntos
Chumbo/toxicidade , Nanotubos de Carbono/toxicidade , Células A549 , Animais , Humanos , Pulmão , Estresse Oxidativo
13.
ACS Omega ; 5(40): 26063-26076, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073133

RESUMO

Highly crystalline and monophasic silver nanospheres with a high specific surface area of 57 m2/g have been synthesized by an environmentally benign rapid chemical reduction using l-alanine for catalytic transformation, photocatalytic degradation, and bacterial disinfection, which can provide an ample strategy for water remediation. Electron microscopic analysis confirms the spherical morphology of as-prepared silver nanoparticles with an average grain size of 20 nm. Silver nanospheres showed excellent catalytic activity for the catalytic hydrogenation and conversion (95.6%) of 4-nitrophenol to 4-aminophenol. Significant photocatalytic degradation proficiency was also shown for methylene blue (94.5%) and rhodamine B (96.3%) dyes under solar irradiation. The antibacterial behavior of Ala-Ag nanospheres was demonstrated through the disk diffusion antibacterial assay against Gram-positive (Escherichia coli) and Gram-negative (Staphylococcus aureus) bacteria. Multifunctional efficiency of as-prepared Ala-Ag nanospheres for water remediation has also been established.

14.
Food Chem Toxicol ; 143: 111515, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32634506

RESUMO

Numerous applications of reduced graphene oxide (RGO) and pervasive cadmium (Cd) have led concern about their co-exposure to the environment and human. We studied the combined effects of RGO and Cd in human liver (HepG2) cells. Initially, we found that RGO (up to 50 µg/ml) did not harm to HepG2 cells while Cd induced dose-dependent (1-10 µg/ml) cytotoxicity. Exciting observations were that a non-cytotoxic concentration of RGO (25 µg/ml) effectively mitigates the toxic effects of Cd (2 µg/ml) such as cell viability reduction, lactate dehydrogenase release, and irregular cell morphology. Cd-induced cell cycle arrest, induction of caspases (3 and 9) enzymes activity, and loss of mitochondrial membrane potential were also significantly alleviated by RGO co-exposure. Moreover, generation of pro-oxidants (reactive oxygen species and hydrogen peroxide levels) and depletion of antioxidants (glutathione level and superoxide dismutase activity) due to Cd exposure was effectively attenuated by RGO co-exposure. Mitigating effect of RGO could be due to strong adsorption of Cd on the large surface area of RGO sheets, which decrease the cellular uptake and bioavailability of Cd for HepG2 cells. This study warrants future research on potential mechanisms of mitigating effects of RGO against Cd-induced toxicity in animal models.


Assuntos
Cádmio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Grafite/toxicidade , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cádmio/administração & dosagem , Relação Dose-Resposta a Droga , Grafite/administração & dosagem , Grafite/química , Células Hep G2 , Humanos , Microscopia Eletrônica de Varredura
15.
J Appl Toxicol ; 40(9): 1228-1238, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32220024

RESUMO

Broad application of reduced graphene oxide (rGO) and ubiquitous lead (Pb) pollution may increase the possibility of combined exposure of humans. Information on the combined effects of rGO and Pb in human cells is scarce. This work was designed to explore the potential effects of rGO on Pb-induced toxicity in human alveolar epithelial (A549) cells. Prepared rGO was polycrystalline in nature. The formation of a few layers of visible creases and silky morphology due to high aspect ratio was confirmed. Low level (25 µg/mL) of rGO was not toxic to A549 cells. However, Pb exposure (25 µg/mL) induced cell viability reduction, lactate dehydrogenase enzyme leakage with rounded morphology in A549 cells. Remarkably, Pb-induced cytotoxicity was significantly mitigated by rGO co-exposure. Pb-induced mitochondrial membrane potential loss, cell cycle arrest and higher activity of caspase-3 and -9 enzymes were also alleviated by rGO co-exposure. Moreover, we observed that Pb exposure causes generation of pro-oxidants (e.g., reactive oxygen species, hydrogen peroxide and lipid peroxidation) and antioxidant depletion (e.g., glutathione and antioxidant enzymes). In addition, the effects of Pb on pro-oxidant and antioxidant markers were significantly reverted by GO co-exposure. Inductively coupled plasma-mass spectrometry suggested that due to the adsorption of Pb on rGO sheets, accessibility of Pb ions for A549 cells was limited. Hence, rGO reduced the toxicity of Pb in A549 cells. This research warrants further study to work on detailed underlying mechanisms of the mitigating effects of rGO against Pb-induced toxicity on a molecular level.


Assuntos
Células A549/efeitos dos fármacos , Citotoxinas/toxicidade , Grafite/toxicidade , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Exposição Ambiental , Humanos
16.
Materials (Basel) ; 13(3)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024252

RESUMO

Iron oxide-reduced graphene oxide (Fe3O4-RGO) nanocomposites have attracted enormous interest in the biomedical field. However, studies on biological response of Fe3O4-RGO nanocomposites at the cellular and molecular level are scarce. This study was designed to synthesize, characterize, and explore the cytotoxicity of Fe3O4-RGO nanocomposites in human liver (HepG2) cells. Potential mechanisms of cytotoxicity of Fe3O4-RGO nanocomposites were further explored through oxidative stress. Prepared samples were characterized by UV-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results demonstrated that RGO induce dose-dependent cytotoxicity in HepG2 cells. However, Fe3O4-RGO nanocomposites were not toxic. We further noted that RGO induce apoptosis in HepG2 cells, as evidenced by mitochondrial membrane potential loss, higher caspase-3 enzyme activity, and cell cycle arrest. On the other hand, Fe3O4-RGO nanocomposites did not alter these apoptotic parameters. Moreover, we observed that RGO increases intracellular reactive oxygen species and hydrogen peroxide while decrease antioxidant glutathione. Again, Fe3O4-RGO nanocomposites did not exert oxidative stress. Altogether, we found that RGO significantly induced cytotoxicity, apoptosis and oxidative stress. However, Fe3O4-RGO nanocomposites showed good biocompatibility to HepG2 cells. This study warrants further research to investigate the biological response of Fe3O4-RGO nanocomposites at the gene and molecular level.

17.
Nanomaterials (Basel) ; 9(12)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795404

RESUMO

Graphene-based nanocomposites have attracted enormous interest in nanomedicine and environmental remediation, owing to their unique characteristics. The increased production and widespread application of these nanocomposites might raise concern about their adverse health effects. In this study, for the first time, we examine the cytotoxicity and oxidative stress response of a relatively new nanocomposite of cerium oxide-reduced graphene oxide (CeO2-RGO) in human lung epithelial (A549) cells. CeO2-RGO nanocomposites and RGO were prepared by a simple hydrothermal method and characterized by relevant analytical techniques. Cytotoxicity data have shown that RGO significantly induces toxicity in A549 cells, evident by cell viability reduction, membrane damage, cell cycle arrest, and mitochondrial membrane potential loss. However, CeO2-RGO nanocomposites did not cause statistically significant toxicity as compared to a control. We further observed that RGO significantly induces reactive oxygen species generation and reduces glutathione levels. However, CeO2-RGO nanocomposites did not induce oxidative stress in A549 cells. Interestingly, we observed that CeO2 nanoparticles (NPs) alone significantly increase glutathione (GSH) levels in A549 cells as compared to a control. The GSH replenishing potential of CeO2 nanoparticles could be one of the possible reasons for the biocompatible nature of CeO2-RGO nanocomposites. Our data warrant further and more advanced research to explore the biocompatibility/safety mechanisms of CeO2-RGO nanocomposites in different cell lines and animal models.

18.
Chemosphere ; 216: 823-831, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30399561

RESUMO

Bismuth oxide nanoparticles (Bi2O3 NPs) have shown great potential for several applications including cosmetics and biomedicine. However, there is paucity of research on toxicity of Bi2O3 NPs. In this study, we first examined dose-dependent cytotoxicity and apoptosis response of Bi2O3 NPs in human breast cancer (MCF-7) cells. We further explored the potential mechanisms of cytotoxicity of Bi2O3 NPs through oxidative stress. Physicochemical study demonstrated that Bi2O3 NPs have crystalline structure and spherical shape with mean size of 97 nm. Toxicity studies have shown that Bi2O3 NPs reduce cell viability and induce membrane damage dose-dependently in the concentration range of 50-300 µg/ml. Bi2O3 NPs also disturbed cell cycle of MCF-7 cells. Oxidative stress response of Bi2O3 NPs was evident by generation of reactive oxygen species (ROS), higher lipid peroxidation, reduction of glutathione (GSH) and low superoxide dismutase (SOD) enzyme activity. Interestingly, supplementation of external antioxidant N-acetyl-cysteine almost negated the effect of Bi2O3 NPs induced oxidative stress and cell death. We also found that exposure of Bi2O3 NPs induced apoptotic response in MCF-7 cells suggested by impaired regulation of Bcl-2, Bax and caspase-3 genes. Altogether, we found that Bi2O3 NPs induced cytotoxicity in MCF-7 cells through modulating the redox homeostasis via Bax/Bcl-2 pathway. This study warranted further research to delineate the underlying mechanism of Bi2O3 NPs induced toxicity at in vivo level.


Assuntos
Bismuto/química , Neoplasias da Mama/genética , Apoptose , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos
19.
Sci Rep ; 7(1): 17662, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247182

RESUMO

We investigated the anticancer potential of Ag-doped (0.5-5%) anatase TiO2 NPs. Characterization study showed that dopant Ag was well-distributed on the surface of host TiO2 NPs. Size (15 nm to 9 nm) and band gap energy (3.32 eV to 3.15 eV) of TiO2 NPs were decreases with increasing the concentration of Ag dopant. Biological studies demonstrated that Ag-doped TiO2 NP-induced cytotoxicity and apoptosis in human liver cancer (HepG2) cells. The toxic intensity of TiO2 NPs was increases with increasing the amount of Ag-doping. The Ag-doped TiO2 NPs further found to provoke reactive oxygen species (ROS) generation and antioxidants depletion. Toxicity induced by Ag-doped TiO2 NPs in HepG2 cells was efficiently abrogated by antioxidant N-acetyl-cysteine (ROS scavenger). We also found that Ag-doped TiO2 NPs induced cytotoxicity and oxidative stress in human lung (A549) and breast (MCF-7) cancer cells. Interestingly, Ag-doped TiO2 NPs did not cause much toxicity to normal cells such as primary rat hepatocytes and human lung fibroblasts. Overall, we found that Ag-doped TiO2 NPs have potential to selectively kill cancer cells while sparing normal cells. This study warranted further research on anticancer potential of Ag-doped TiO2 NPs in various types of cancer cells and in vivo models.


Assuntos
Nanopartículas Metálicas/uso terapêutico , Neoplasias/radioterapia , Fotoquimioterapia , Prata/uso terapêutico , Titânio/uso terapêutico , Células A549 , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Hepatócitos/efeitos da radiação , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Estresse Oxidativo , Transtornos de Fotossensibilidade , Ratos , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Titânio/química , Raios Ultravioleta
20.
Sci Rep ; 7(1): 12560, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970556

RESUMO

The microstructural, optical and photocatalytic properties of undoped and 5% Zn doped CeO2 nanocrystals (NCs) have been explored through various analytical techniques, viz. powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-visible, Raman and photoluminescence (PL) spectroscopy. XRD data analysis revealed face centred cubic (FCC) crystal symmetry of the samples with average crystallite size in the range of 19-24 nm. XPS results confirmed that the Zn ions exist in +2 states and successfully incorporated into the CeO2 matrix. Internal structure and morphology observed by TEM exhibited almost uniform cubical shape of the particles of average size ~20-26 nm. The enegy bandgap of undoped and Zn doped CeO2 NCs had a direct transition of 3.46 eV and 3.57 eV respectively as estimated by the optical absorption data. The increase in the bandgap revealed blue shift of absorption edge due to the quantum confinement effects. The NCs exhibited an inherent luminescence emission peak at ~408 nm in PL spectra. Improvement in the photocatalytic activity was observed for Zn incorporated sample attributed to the enhanced light absorption or/and fall in charge recombination rate between CeO2 and Zn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA